Classifying Subcategories of Modules over a Commutative Noetherian Ring
نویسنده
چکیده
Abstract. Let R be a quotient ring of a commutative coherent regular ring by a finitely generated ideal. Hovey gave a bijection between the set of coherent subcategories of the category of finitely presented R-modules and the set of thick subcategories of the derived category of perfect R-complexes. Using this isomorphism, he proved that every coherent subcategory of finitely presented R-modules is a Serre subcategory. In this paper, it is proved that this holds whenever R is a commutative noetherian ring. This paper also yields a module version of the bijection between the set of localizing subcategories of the derived category of R-modules and the set of subsets of SpecR which was given by Neeman.
منابع مشابه
Classifying Subcategories of Modules
Let R be the quotient of a regular coherent commutative ring by a finitely generated ideal. In this paper, we classify all abelian subcategories of finitely presented R-modules that are closed under extensions. We also classify abelian subcategories of arbitrary R-modules that are closed under extensions and coproducts, when R is commutative and Noetherian. The method relies on comparison with ...
متن کاملNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملThick Subcategories of Modules over Commutative Rings
For a commutative noetherian ring A, we compare the support of a complex of A-modules with the support of its cohomology. This leads to a classification of all full subcategories of A-modules which are thick (that is, closed under taking kernels, cokernels, and extensions) and closed under taking direct sums.
متن کاملGeneralized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008